The Mechanical Environment Modulates Intracellular Calcium Oscillation Activities of Myofibroblasts

نویسندگان

  • Charles Godbout
  • Lysianne Follonier Castella
  • Eric A. Smith
  • Nilesh Talele
  • Melissa L. Chow
  • Adriano Garonna
  • Boris Hinz
چکیده

Myofibroblast contraction is fundamental in the excessive tissue remodeling that is characteristic of fibrotic tissue contractures. Tissue remodeling during development of fibrosis leads to gradually increasing stiffness of the extracellular matrix. We propose that this increased stiffness positively feeds back on the contractile activities of myofibroblasts. We have previously shown that cycles of contraction directly correlate with periodic intracellular calcium oscillations in cultured myofibroblasts. We analyze cytosolic calcium dynamics using fluorescent calcium indicators to evaluate the possible impact of mechanical stress on myofibroblast contractile activity. To modulate extracellular mechanics, we seeded primary rat subcutaneous myofibroblasts on silicone substrates and into collagen gels of different elastic modulus. We modulated cell stress by cell growth on differently adhesive culture substrates, by restricting cell spreading area on micro-printed adhesive islands, and depolymerizing actin with Cytochalasin D. In general, calcium oscillation frequencies in myofibroblasts increased with increasing mechanical challenge. These results provide new insight on how changing mechanical conditions for myofibroblasts are encoded in calcium oscillations and possibly explain how reparative cells adapt their contractile behavior to the stresses occurring in normal and pathological tissue repair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prolonged Mechanical Stretch Initiates Intracellular Calcium Oscillations in Human Mesenchymal Stem Cells

Mesenchymal stem cells (MSCs) are a promising candidate for cell-based therapy in regenerative medicine. These stem cells can interact with their mechanical microenvironment to control their functions. External mechanical cues can be perceived and transmitted into intracellular calcium dynamics to regulate various cellular processes. Recent studies indicate that human MSCs (hMSCs) exhibit a het...

متن کامل

Myofibroblast communication is controlled by intercellular mechanical coupling.

Neoformation of intercellular adherens junctions accompanies the differentiation of fibroblasts into contractile myofibroblasts, a key event during development of fibrosis and in wound healing. We have previously shown that intercellular mechanical coupling of stress fibres via adherens junctions improves contraction of collagen gels by myofibroblasts. By assessing spontaneous intracellular Ca2...

متن کامل

Annexin I modulates cell functions by controlling intracellular calcium release.

Annexin I is an intracellular protein in search of a function. Ex vivo it has calcium- and phospholipid-binding properties. To evaluate its role in vivo, MCF-7 cells were stably transfected with annexin I in sense or antisense orientations. In cells overexpressing annexin I, calcium release was abrogated on stimulation of purinergic or bradykinin receptors, whereas non-transfected cells or cell...

متن کامل

Regulation of myofibroblast activities: calcium pulls some strings behind the scene.

Myofibroblast-induced remodeling of collagenous extracellular matrix is a key component of our body's strategy to rapidly and efficiently repair damaged tissues; thus myofibroblast activity is considered crucial in assuring the mechanical integrity of vital organs and tissues after injury. Typical examples of beneficial myofibroblast activities are scarring after myocardial infarct and repair o...

متن کامل

Possible involvement of ATP-purinoceptor signalling in the intercellular synchronization of intracellular Ca oscillation in cultured cardiac myocytes

Isolated and cultured neonatal cardiac myocytes contract spontaneously and cyclically. The contraction rhythms of two isolated cardiac myocytes, each of which beats at different frequencies at first, become synchronized after the establishment of mutual contacts, suggesting that mutual entrainment occurs due to electrical and/or mechanical interactions between two myocytes. The intracellular co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013